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Abstract 

A probability distribution of the structure factor is 
established from the analysis of the effects of errors 
involved in the multiple-wavelength anomalous dif- 
fraction (MAD) method. This probability distribu- 
tion, derived from those of the intensities, is 
two-dimensional for acentric reflections and uni- 
dimensional for centric reflections. It permits, using 
the centroid of the distribution, the calculation of the 
modulus and the phase of the 'best' structure factor. 
The procedure for extracting the phase and its figure 
of merit is presented. Tests performed on simulated 
data show the contribution of this method with 
respect to other methods which use a distribution of 
only the phase as a function of the error of closure. 

Introduction 

In the field of biological crystallography, one of the 
most important consequences of the use of 
synchrotron radiation has been the practical 
implementation of the multiple-wavelength anoma- 
lous diffraction method (MAD), a phasing method 
which has now been used to solve a number of 
macromolecular structures (for reviews, see e.g. 
Fourme & Hendrickson, 1990; Hendrickson, 1991; 
Smith 1991). 

MAD is a newcomer to the pallette of de novo 
phasing methods such as multiple isomorphous 
replacement (MIR) or single isomorphous replace- 
ment with anomalous scattering (SIRAS). In these 
methods, the phasing procedure can be divided into 
two basic steps. The first step is the determination of 
the structural parameters of a subset of atoms which 
have, with respect to the rest of atoms, particular 
properties such as a large atomic number and/or 
significant anomalous scattering of the X-ray wave- 
length(s) used in data collection. The second step is 
the use of these parameters in the estimation of 
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Fourier coefficients suitable for the calculation of an 
electron-density map of the total structure. In prac- 
tice, the distinction between the two steps is not so 
clear cut, especially because parameters of the subset 
and Fourier coefficients are often refined together. 
The MAD method relies on a subset of atoms with 
significant anomalous scattering. This subset of 
atoms, A, is called hereafter the partial structure. 
The pertinent parameters of the partial structure are 
atomic coordinates, occupancies, temperature factors 
and the anomalous components of the atomic scat- 
tering factors at each wavelength. The first step of 
the MAD phasing procedure is the determination of 
these parameters. For each h, the second step makes 
a pivotal use of a reference structure factor calcu- 
lated from these parameters in order to estimate the 
phase (and possibly modulus) of the Fourier coeffi- 
cient to be used in the calculation of the initial 
electron-density map. In most applications of MAD, 
the reference structure factor is the wavelength- 
dependent part of the structure factor of the partial 
structure, and the result is an estimation of the 
"normal' part, °Fr, of the structure factor of the total 
structure (the subscript T refers to the total structure, 
and the superscript 0 to a wavelength-independent 
quantity) (Fig. 1). 

When compared to the MIR or SIRAS methods, 
MAD has several advantages: all measurements can 
be made on a single sample in which no chemical 
changes occur, thereby supressing problems and limi- 
tations related to the lack of isomorphism between 
the native crystal and the heavy-atom derivatives. In 
contrast, intensity differences in the MAD method 
are generally weak. This requires well designed 
experiments, a careful methodology to optimize both 
the strength of the signals and the accuracy in the 
measurement of small intensity differences, and a 
careful treatment of errors. 

Let us assume that the collection, analysis and 
scaling of multiple-wavelength diffraction data have 
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been performed, providing for each reflection h, n 
intensity measurements ,*Fr(+-h) 12 (the superscript 
a is the wavelength of the measurement; m h refers to 
the anomalous pair h, - h). The determination of the 
structural parameters of the partial structure may be 
performed using single-wavelength data, although 
not under optimal conditions, In effect, the Fourier 
map calculated with coefficients ['aFt(h) - 
l a F / - ( - h ) l ]  2 (Rossmann, 1961) is a sharpened 
Patterson that represents the distribution of inter- 
atomic vectors for the anomalous scatterers, but with 
a degraded signal-to-noise ratio (Karle, 1980). An 
intrinsically more powerful method relies on that 
analysis of multiple-wavelength data by an algebraic 
procedure first proposed in principle by Karle (1980). 
Karle expressed all quantities in terms of two struc- 
ture factors: °F A which corresponds to the normal 
scattering of the anomalous scatterers and °Fp which 
corresponds to the normal scattering of the rest of 
the atoms. Hendrickson (1985) used the formulation 
in terms of °FA and °F 7- in his implementation of the 
algebraic method (program M A D L S Q ) .  With such 
notations as in Fig. 1, the equations for a single type 
of anomalous scatterers are 

*F(_+ h): 2 = 0FTi2 + a(A),°FA ',2 

+ b(a) °Fr '°FA. cos (°¢r  - 0CA) 

+ C(A) °Fr °FA sin (°~pr - °~pA), (1) 

with 

a(a) = Cf '~- + ~ f , , 2 ) / ( f o ) e ,  

b(A) = 2 ~f'/fo, 
and 

c(A) = 2~f"/f  °. 

The quantities derived by M A D L S Q  are °FA., 
°Fr! and the phase difference °q~r-°~pA. From the 

set of !°FA 2, the structure of anomalous scatterers 
can by solved by standard methods such as Patterson 

° E 

A 

Fig. 1. Vector diagram of  structure factors pertinent to the M A D  
method for one reflection h at a single wavelength (see notations 
in the text). 

or direct methods, and then refined by least-squares 
techniques. 

The second step makes use of the partial structure 
to obtain estimates of °FT. As for MIR and SIRAS 
methods, the main problem is the treatment of errors 
in the derived quantities. Methods which have been 
used to date for the treatment of errors fall into two 
broad categories. One has been developed in the 
context of the algebraic analysis (Hendrickson, 1985) 
and proceeds as follows. The phase °~pA calculated 
from the refined model of the partial structure is 
used to derive °~,7+ from the phase difference °q~r- 
°q~ A. The phase and amplitude of the Fourier coeffi- 
cient °Fr are thus determined. Two electron densitites 
based on weighted °FT coefficients are traced with 
°q~ A calculated for the two enantiomorphs of the 
partial structure, and the correct map is distin- 
guished by chemical reasonableness or by symmetry 
considerations. Weights are based on residuals in the 
least-squares fit of the phase equations to the obser- 
vations. 

The second type of treatment is based on proba- 
bility methods. Most applications to date of a 
probability analysis to MAD were adaptations of the 
error treatment for MIR (Blow & Crick, 1959). In 
the description of Hendrickson & Lattman (1970), a 
Gaussian distribution is ascribed to errors of closure 
in F 2 values instead of F .  A probability distribu- 
tion function for the phase information is derived 
from the intensity measurements. Fourier coefficients 
used for the calculation of the electron-density map 
have centroid phases and figure-of-merit-weighted 
moduli. The correct enantiomorph of the partial 
structure is selected as in the algebraic method. This 
approach was used either with simulated MAD data 
(Phillips & Hodgson, 1980) or real data (Kahn et al., 
1985: Kahn, Fourme, Bosshard, Chiadmi et al., 
1986; Korszun, 1988; Guss et al., 1988). Hendrickson 
et al. (1989) and Pfihler, Smith & Hendrickson (1990) 
used it as an alternative way to derive weights for the 
OF T Fourier synthesis in the algebraic analysis and 
the probability distribution was cast in the A, B, C, 
D representation of Hendrickson & Lattman (1970). 
These simple probability analyses have been quite 
useful in providing an evaluation of the reliability of 
phases. Furthermore, the A, B, C, D formulation 
facilitates the combination of MAD information 
with information from other sources, such as isomor- 
phous replacement, solvent flattening, non-crystallo- 
graphic symmetry and partial models. As for MIR 
methods, probability methods are required to exploit 
fully and rigorously all the available information. 
Thus, our goal is the formulation and implementa- 
tion of a probability theory for MAD phasing which 
includes the refinement of parameters of the partial 
structure model. The first step in this procedure is 
reported in this article. 
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Theory 

At the wavelength ,~, the scattering factor of the 
anomalous species k is 

aft, =.f~0 + afl " + i af,j,, 

and the contribution of the partial structure to the 
structure factor from the total structure is then 

aFA = OFA + aF,~ + i aF/~ '. 

The expression of the structure factor from the total 
structure, a i r ,  can be written as 

aFT= OF T + a F~ + i a F~ ". 

The coefficients °F r follow Friedel's law and their 
Fourier transform is a real map. Let us note at, r, 
O¢,r, O¢A ' a~p~ and a~0j' as the phases of AFT, OFT, °FA, 
aF~ and aFt', respectively. Then 

I AFr! exp (i a OPT) = I°FTI exp (i a ¢T) + [a F~I exp (i a q~ j) 

+ ilaFA'i exp(i aq~j,). (2) 

Let us define 

X = [°FTI COS °~or, (3a) 

Y = I°FT I sin °~0r, (3b) 

ax : laF~l cos a~A' -- laF~'! sin aCA', (3C) 

and 
a / '  

ay = !aFt] sin '~o~ + laF~'l cos q~A. (3d) 

Squaring equation (2), and after some straightfor- 
ward rearrangements, one gets the equation 

hi(h) : ,aFr(h)12 = ( X  + Ax)Z + ( Y  + ay)2. (4) 

The intensity of the mate reflection - h  is obtained 
by inverting the sign preceding the term in F"  in 
expressions (3). Each intensity measurement pertain- 
ing to the anomalous pair ___h at the wavelength A 
will provide such an equation and will contribute to 
the determination of the Fourier coefficient °Fr(h). 

The scheme leading to Fourier coefficients suitable 
for the calculation of an electron-density map from 
MAD measurements is as follows. For the n 
measurements pertaining to ___h, it is assumed that 
estimations of the parameters in ax and ay are availa- 
ble. Then the 'best' values of X and Y in equation (4) 
(XB and YB), which are optimal with respect to some 
specified criterion, are determined taking into 
account all intensity measurements, their error distri- 
butions and error distributions for ax and ay. The 
'best' coefficient, FB(h), to be used in the Fourier 
synthesis is 

FB(h) : [°Fr(h)]B : (Xa + iY,Q. (5) 

If there is only one atomic species with significant 
anomalous scattering, the equations are obtained 
from (4) after rotating the reference axis by °q~A, 

giving 

al(__h) = I'~Fr(_+h)l 2 = (X' + ax')2 + (Y' + ay,)2, 

(6) 
where 

and 

~ x ' =  I°FAl~f'Jf °, 

a y ,=  [OFAIAf,,/fO ' 

X' = I°Frl cos (°q~r -- °q~A), 

Y" = ;°FTI sin (0~pr -- 0~0a). 

This set of equations is equivalent to the set of 
equations (1). They were derived independently on 
the basis of Karle (1980), and their first applications 
were reported by Fourme, Kahn & Chiadmi (1985). 

Derivation of F~h) 

Let us define the random variable F(h)= X(h)+ 
i Y(h). To each possible set {F(h)}, where F(h) can 
take any value in the complex plane, we associate a 
probability distribution p[{F(h)}] which reflects the 
uncertainties on the measurements and on the 
parameters of the partial structure. This distribution 
is more precisely defined in the next section; as for all 
other distributions in the text, its normalization is 
implicit. 

The criterion chosen in this article for determining 
FB(h) from this distribution is taken from Blow & 
Crick (1959). It consists of minimizing the r.m.s. 
(root mean square) of the discrepancy between the 
Fourier transform p~(r) calculated from a unique set 
of Fourier coefficients {Fn(h)} and the continuum of 
the transforms p[r,{F(h)}]. Each of these transforms 
derives from the set of coefficients {F(h)} and is 
weighted by the probability distribution p[{F(h)}] 
associated with this set. 

Let us define dp[r,{F(h)}] as pB(r)-p[r,{F(h)}]. 
According to Blow & Crick, its variance (Ap 2) over a 
unit cell, for a given set, is 

(Ap2)~e,, = I/V2EIF.(h)- F(h)l 2. 
h 

The weighted mean over all sets is 

(Ap 2) = fp[{F(h)}](Ap2)ceud~, 

where d~: is the differential element of the 2m- 
dimensional space of {F(h)}, and m is the number of 
reflections. 

In the approximation that all F(h) are distributed 
independently, i.e. 

p[{F(h)}] = l-]p[F(h)], 
h 

then 

(Ap2) = 1 / V 2 ~ { f l f  ~(h) - f (h)12p[f(h)]dM(h)d Y(h)}, 
h 
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or, with a simplified notation 

(Ap 2) = 1/V2Y.(]Fs(h)- F(h)12). 
h 

The minimum of this quantity is obtained when 
every term of the sum is minimal. As each term can 
be written as 

( [ F s ( b ) -  F(h)l 2) 

- -X~+ Y~-2(XB(X)+ YB(Y)) +(X2+ y2), 

its minimum is obtained when X8 and YB satisfy the 
relations 

and 

Then 

x , =  (x)  

r . =  (Y). 

rB(h) = (r(h)) = f f r(h)p[r(h)]dXd Y. 

The optimal structure factor FB, which can be used 
as such in the calculation of an electron-density map, 
is then given by 

IF~I = (X~ + y~),,2 

and 

q~R = Arg (X~ + i YA). 

p(~h), it is chosen uniform. Thus, 

P(0) = l / 2 r ,  

and 

p(I,O) = (1/2-tr)p(/). 

The elementary conditional probability distribution 
of the structure factor is 

p ( X , Y ] . . . G . . . )  = 2p(I,4~)= (1/~-)p(/). 

Hence, this probability is proportional to p(/). 
(ii) Centric phases. Since the phases are con- 

strained to a value q~R modulo r ,  F(h) is a unidimen- 
sional variable, so it is convenient to multiply (2) by 
exp(-iq~R). We define the parameters 

Xc -- I°rd cos (0~r - ,Pn), 

%.= I*r,;I cos (*q~% - ~R), 

and 

% = I'~G'I cos (*G ' -  +R), 

all of these cosine values being +_ 1. Thus, the inten- 
sity has the form 

AI = (X,. + Axc)2 "3 k- A.yc2 , 

and the probability distribution of F = X,. exp (iq~R) is 

p(l~. . .G~. . . )  = p(X~.I...G,... ) = 2IX,. + ax,.lp(aI). 

Determination of the probability distribution p[F(h)] 

Conditional probability distributions 

On the basis of (4), the probability distribution of 
F(h) is directly deduced from the probability distri- 
bution, p(1), of the intensity, I = *l(h), by taking into 
account the parameters *F,~, *F,~' and the scale fac- 
tors for each data set. These quantities can be 
expressed from the global parameters, noted as G;, 
which are aft., af'/, occupancies, coordinates and 
temperature factors of the anomalous scatterers and 
the scale factors *K. 

The expression of the probability distribution of 
the structure factor also depends on the type of 
reflection. 

(i) Acentric phases. To get the probability distribu- 
tion of F = (X + iY), we use the change of variables 

X -1 t- *x  = (D 1,2 c o s  ~t 

and 

y + ,y  = (/)1,,2 sin ~h, 

where I=*I(b)  and 0 is the phase of *F(h). The 
variables I and 4' being independent, 

p(I,~h) = p(1)p(~). 

Assuming that we have no prior information on 

Combination o f  distributions 

At this stage, a set of conditional probability 
distributions of the structure factor, deriving from 
those of the intensities, has been obtained. In essen- 
tially all published studies using probability methods 
for the derivation of phases from MAD measure- 
ments, the following approximations have been 
made: (i) independence of the information associated 
with the individual observations *I(+h); (ii) no 
systematic errors on these observations; (iii) no 
errors on the global parameters G. Then, with pj 
referring to the elementary probability distribution 
associated with the measurement j ( j  = 1...n) per- 
taining to _+h: 

for a reflection with a centric phase 

p(X,.) = VIp,(X,. I .... G+ . . . .  ) ~ ~IX, + ax,.~,(*l); 
J J 

for a reflection with an acentric phase 

p(X,Y)= ~p,(X,~ .... G, . . . )~ ~p,(*I). 
.1 .I 

In fact, one has to take into account the uncertainties 
on the global parameters G~. These uncertainties are 
expressed by the probability distribution noted 
p( .... G; .. . .  ) which can be estimated, for instance, 
from the variance-covariance matrix obtained 
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during the refinement procedure of the parameters 
Gi. 

Then, for an acentric reflection, the probability 
distribution of the structure factor is (Einstein, 1977) 

p(X, Y)= f . . . f p (  .... G, . . . .  )Vlp~(X, I~...,G, . . . .  ) . . .dG, . . . .  
.i 

For a centric reflection, the probability distribution 
of the structure factor is 

p(X, . )=f . . . fp(  .... G, . . . .  )l-]pj(Xcl .... G,, . . . ) . . .dG, . . . .  
J 

Figure of merit 

In the conventional error treatment in the MIR 
method (Blow & Crick, 1959), the amplitude of each 
Fourier coefficient is weighted by a figure of merit. 
In our case, the figure of merit does not appear 
explicitly in the expression of Fs, but it can be 
defined as follows. 

(i) Let us first consider the situation (as in the 
conventional treatment of errors in the MIR 
method) where the probability distributions of the 
modulus and of the phase of every Fourier 
coefficient F = [F[ exp i~o are independent, i.e. 

p(F) = p(IF[,~p) = p(IF])p(q~). 

Then 

F8 = (IVl exp iq~) = (IVl)(exp i~) = m(IFI). 

(dp  2) can be expressed as a function of the figure of 
merit, ]m], as 

( I F n -  El 2) = ( r n ( I r l )  -IF[ exp i~l 2) = (IVl 2) -Iml2(lVl) 2, 

and, since in the MIR method the modulus is a 
measured quantity, IFel, one obtains the usual 
expression 

(Ap2) = l/V2F.lFp(h)]2[l-lm(h)12]. (7) 
h 

(ii) If the probability distribution is a function of 
both the modulus and the phase, then 

([F8 - F[ 2) = ([(F) - Fl 2) = ([FI 2) - I (F)[  2, 

and thus 
(Ap 2)= I/WZ([FI2)(1 I(F)I2] 

. - ( [ -~ [2 ) f  

By analogy with equation (7), the figure of merit, Iml, 
is 

] ( F ) I -  IF81 (8) 
Iml = (]rl =),,,2 - (]FI2), ;2 

Probability distribution of the intensity 

The formalism developed above uses any valuable 
expression of tile probability distribution of the 
intensity. The use of a Gaussian distribution is justi- 

fled by the following considerations. The uncertainty 
in an intensity measurement must take into account 
the counting statistics (Poisson distribution) and 
other errors as a result of intensity fluctuations of the 
X-ray beam, absorption, extinction, radiation 
damage etc. The estimation of this uncertainty can 
be made fi'om the measurements of equivalent 
reflections, which gives a more realistic evaluation 
than taking into account only the counting statistics. 
In this case, French & Wilson (1978) suggest that the 
resulting intensity follows a quasi-normal distribu- 
tion. The probability distribution of the measure- 
men t  s, of the intensity I is then 

p(~]I) oc exp - [ (  ~ - I)2/(2o'~)], 

where I is given by equation (4), and o'~ is the 
standard deviation of errors associated with the dis- 
tribution 6 = e - I. 

The intensity I can only be known by means of a 
probability distribution, which is, according to Bayes 
rule 

p(II ~" )~  p(s'lI)po(I), 

where the function P0 represents the information 
known a priori on the quantity I. In the narrow 
range of I in which p(e]I) is significantly different 
from 0, po(l) can be considered uniform. The distri- 
bution p( l  t s, ) is the only information available about 
I and has been already quoted as p(l) .  Then 

p(I)oc exp [ - ( ;  - 1)2/(2o2)]. 

The value of the standard deviation o.t is estimated 
from the standard deviation o., of the intensity 
measurements. 

Representation of the phase information with A, B, C, 
D coefficients 

In order to combine the information from the MAD 
source with the information from other sources, the 
probability distribution of the structure factor is 
expressed in practical terms as a phase distribution, 
f (¢) ,  associated with a single modulus value. 

The best phase value is calculated f romfl¢) ,  which 
is determined from p(]F],¢), and is expressed as 

¢8 = Arg [fflq~) exp (@)d~]. 

This equation could be written as 

[rn I exp (i~os) = ff(q~) exp (iq~)dq~, 

which corresponds to the usual definition of the 
figure of merit. 

In the case where the probabilities of the modulus 
and of the phase are decoupled, the function, fl~o), is 
simply the margin distribution p(~o) of p([F[,~o) (i.e. 
f ]FIp(iF ], ~o ) d ]FI). 
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We derive below the expression of f ( ¢ )  in the 
general case where the phase and the modulus are 
coupled. As 

FB = ]FB] exp (icR) = Im]<[F]2) ' 2 exp (icB) 

= f f lFI  exp ( i¢)p( lFl ,¢) lFld lFld¢ ,  

then 

f ( ¢ )  = ( l/<[FI2)':2)flFl2p(IFl,¢)dlF I. 

f (¢ )  can be expressed using A, B, C, D coefficients 
(Hendrickson & Lattman, 1970) as 

,~¢) ~ exp [A cos (¢) + B sin (¢) 

+ C cos (2¢) + D sin (2¢)], 

where 

and 

A = fin [f(¢)]  cos (¢)d¢,  

B = fin [.[(¢)] sin (¢)d¢,  

C = fln [f(¢)]  cos (2¢)d¢ 

D = fln [ j (¢)]  sin (2¢)d¢. 

Implementation 
Our first experience with the use of probability 
methods for the analysis of MAD data occurred with 
the crystal structure study of a 10 kDa protein, the 
Opsanus tau parvalbumin (Kahn et al., 1985: Kahn, 
Fourme, Bosshard, Chiadmi et al., 1986). Tb-labelled 
parvalbumin crystals were prepared. Bijvoet pairs 
were measured at three wavelengths close to the Tb 
L~  absorption edge, using synchrotron radiation 
and the spherical drift proportional chamber of the 
MARK I diffractometer (Kahn et al., 1982). Inter- 
scaling between the six data sets was performed, and 
a quasi-absolute scaling was applied. The Tb partial 
structure was solved by anomalous Patterson tech- 
niques (Rossmann, 1961) and refined with the pro- 
gram A N O L S Q  (Hendrickson & Teeter, 1981). The 
phasing technique was derived from MIR methods, 
as described by Phillips & Hodgson (1980), and 
implemented in the program M W A S D  written by 
one of us (RF). Reflections h recorded at the wave- 
length ,t, at which a f , ,  is maximum were used as a 
pseudo-native data set. The total phase probability 
P(¢) was taken as the product of the distributions 
formed from all the possible pairings of the pseudo- 
native set with the other sets. As we had six data sets 
(hkl and hkl at three wavelengths), it was possible to 
calculate five 'lack-of-closure' values e(¢) for each 
reflection of the pseudo-native set. In order to get a 
real electron-density map, the complex number a 'Fr  
was corrected for the imaginary wavelength- 
dependent part, *'FA', of the partial structure. 

Finally, the electron-density map was calculated with 
corrected centroid phases and figure-of-merit- 
weighted amplitudes. This probability method had 
several drawbacks: (i) it overestimates the role of the 
pseudo-native set; (ii) Fourier coefficients have to be 
corrected in order to give a real electron density (the 
current version of M W A S D  gives °FT coefficients); 
(iii) only the phase of the Fourier coefficient is 
treated as a random variable. In order to overcome 
these problems, the formalism of equations of type 
(6) was developed (Fourme et al., 1985) after the 
seminal ideas of Karle (1980) and used for the 
treatment of centric reflections in the parvalbumin 
study, as mentioned by Kahn et al. (1985). The next 
step, in 1986, was a program called M A D B E S T ,  
designed for a single type of anomalous scatterer and 
able to treat acentric as well as centric phases with 
the formalism of (6). M A D B E S T  assumes that the 
partial structure has been solved and refined, and 
that *f' and a f , ,  values of sufficient accuracy have 
been determined, which provides values for *x and Ay 
in each equation of type (6). Intensity data sets must 
be submitted to the usual scaling procedures and put 
preferably on a quasi-absolute scale. Under the 
assumptions and simplifications given in Combina- 
tions o f  distributions, M A D B E S T  calculates the total 
bidimensional phase probability distributions and 
Fourier coefficients Ft~ with figures of merit. As an 
example, results of MAD phasing with M A D B E S T  
for one reflection h are given in Figs. 2(a) to 2(c) for 
a hypothetical example with error-free values, except 
for Gaussian errors on intensity measurements. 

In order to test bidimensional integration, three 
sets of calculated structure factors (each of them 
including Bijvoet pairs) were prepared, using the 
atomic model of the refined structure of the Opsanus 
tau parvalbumin (space group P2~212) refined at 2 A 
resolution (Chiadmi, 1991); the model included a 
single Tb 3 + ion with the anomalous-scattering-factor 
values reported in the paper of Kahn et al. (1985) 
(respectively f '  = - 18, - 14, - 24; f "  = 19, 11, 10). 
Six 'ideal' intensity data sets were obtained by 
squaring these structure amplitudes, and errors with 
a Gaussian distribution of adjustable variance were 
added to produce intensity data sets with random 
errors. M A D B E S T  was applied to these simulated 
data, using error-free *.,c and ,3, values. The mean- 
squared differences of the phase (A¢2), where A¢ = 
¢ , 9 - ¢  ..... ~, and density {Ap 2) were calculated for 
various simulated intensity data sets with increasing 
errors. The same data were processed with 
M A D B E S T  and M A D A B C D  (PriMer et al., 1990). 
The resulting errors in phase and in electron density, 
shown in Table 1, are lower with M A D B E S T .  The 
improvement of (A¢ 2) and (Ap 2) is marginal for very 
accurate data, but becomes better for data with 
greater errors (Table 1). Phase distributions obtained 
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for a particular reflection, using MADBEST and 
MADABCD, respectively, are shown in Fig. 3. 

Discussion and perspectives 

The enzyme cutinase (molecular weight 22 kDa) was 
selected as a test with real data. Crystals of this 
enzyme (space group P21) diffract to very high 
resolution. The three-dimensional structure had been 
solved and refined at 1.6/~ resolution (Martinez, De 
Geus, Lauwereys, Matthyssens & Cambillau, 1992). 
We used a single-site (occupancy=0.6) mercury 
derivative of a point mutant, introducing a cysteine 
residue. Data at 1.7/k resolution were measured on a 
single crystal of this derivative at three wavelengths 
close to the Hg Lm absorption edge, using the 
MARK II diffractometer at LURE (Kahn, Fourme, 
Bosshard & Saintagne, 1986). Values for the Hg 
anomalous-scattering factors at the three wave- 

k 

(b) 

: L 

_ _ . ,  

(a) 

(c) 

Fig. 2. Hypothetical  example of  M A D  phasing of  a reflection h 
from Bijvoet-pair measurements at three wavelengths with a 
single type of  anomalous  scatterer, (a) assuming the following 
error-free values: I°Fzt = 175; I'%1 = 40; %Or = 105°; °q~ A = 45°; 
IA'F,~I=5; I":f~l = 10; : % 1  = 15; 1",F,~'1=7.5; I~:F,;'l = 12.5; 
la'F~'I = 7.5, plots of  six circles of  radius ]aFt( _ h) I with centres 
at ( - " x , -  "y). (b) same as (a), but Gaussian-distributed errors 
were added to intensities with 0-[alT(___h)]/al,(_h)= 0.075. (c) 
Total  probability distribution p(X,Y) corresponding to (b). 
Isovalue curves are drawn at 0-, 30- and 50-. The modulus and 
the phase are 198.0 and 94.0 °, respectively, for the true F, 196.2 
and 84.4 ° for the most probable F, 174.3 and 93.1 ° for FB. The 
figure of  merit is 0.90. The black dot shows the extremity of  F, .  

T a b l e  1. Test o f  probability methods using 2 A inten- 
sity data calculated f rom the atomic model o f  Opsanus 
tau parvalbumin with Gaussian-distributed errors 

added 

]0FA[, Af, and a f "  values are error free. UPM and BPM: unidimen- 
sional (program MADABCD) and bidimensional (program 
MADBEST) probability methods, respectively. A~o: r.m.s. 
difference between the phase estimated by a probability method 
and the phase calculated from the model. Ap: r.m.s, difference 
over the unit cell between the electron density calculated from the 
probability method and the electron density of  the model. NrCr: 
number of  unique acentric reflections h in the data  set (each of  
these reflections has been generated twice, together with an equal 
number  of  reflections - h). 

R~:, = EEIl , (h)  - (l(h))l/EEl,(h). 
h i h i 

d~ (o) Zip (e A- 3) 
(a) N,er = 4910; R s y  m = 0.028 

BPM 17.3 0.062 
UPM 17.4 0.063 

(b) Nref = 4918; R s y  m = 0.056 
BPM 29.2 0.093 
UPM 30.0 0.095 

(c) Nr¢r = 4924; R s y  m = 0.084 
BPM 38.0 0.112 
UPM 39.4 0.115 

X 

Fig. 3. Phase distributions for a particular Bragg reflection: f(~o) 
(solid line) from MADBEST and p(~0) (dashed curved line) from 
MADABCD. The two functions are normalized and their ampli- 
tude is proportional  to the distance from the centre. Ap is the 
contribution of  the reflection to the total error of  the electron 
density. Data are simulated from the Opsanus tau parvalbumin 
structure (see text) with ~r(l)/l = 0.15 at three wavelengths (six 
circles). The true structure factor (7") is: IFI = 142.0, ~o = 230 °. 
The best structure factors are: (i) using MADBEST (B): IFI = 
64.6, ~o = 274 ° ([m I =0.53,  Ap= 1.3 × 10-3 e A-: ') .  (ii) 
MADABCD (U): IFI = 69.9, ~o = 303 ° (Iml = 0.50, zap = 1.7 × 
10-3 e/~-3) .  
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lengths were f '  = - 18, - 14, - 16 and f "  = 7, 10, 4. 
The Hg site could be readily located; atomic coordi- 
nates, occupancy and an isotropic temperature factor 
were refined. Taking into account only measurement 
errors, the two electron densities built with phases 
given by MADBEST and MADABCD are of compa- 
rable quality; although the molecular envelope and 
some structural details are very clear, pieces of 
secondary structure are difficult to interpret. After a 
detailed analysis of results, taking into account the 
sequence of batches used for the three-wavelength 
data collection, it became clear that the crucial point 
to improve the quality of MAD phases was 
refinement of the parameters of the partial structure, 
especially scattering factors *j" and *f". Because of 
the monochromator of the experimental setup, we 
had difficulty taking into account the fine structure 
of the absorption edge and in maintaining and repro- 
ducing precisely defined values of the wavelength (see 
Weis, Kahn, Fourme, Drickamer & Hendrickson, 
1991, for a similar case). A least-squares method 
based on the idea that structure-factor estimates for 
acentric reflections are implicit functions of the 
parameters to be refined (Bricogne, 1982, 1984) was 
first used. This method was effective, but some prob- 
lems with instabilities still remained (De La Fortelle, 
Martinez, Kahn & Fourme, 1992). These difficulties 
are similar to those found in the MIR method with 
respect to the refinement of occupancies from acen- 
tric reflections. An improved method for refining the 
global parameters was then developed. As shown by 
Bricogne (1991a,b), the probability distribution for 
structure-factor moduli is best described by a Rice 
function instead of a Gaussian. The Rice function 
provides the analytical basis for a maximum- 
likelihood refinement of the global parameters of the 
partial structure which overcomes well known diffi- 
culties in the problem of bias-free refinement of 
heavy-atom parameters. The integrated value of a 
Rice-based likelihood distribution over the complex 
plane is an optimal estimator of the relevance of the 
partial structure (Bricogne, 1991a). A computer pro- 
gram, implementing this new treatment and using 
several features developed in this article - especially 
the analysis in the complex plane of the phase- 
probability function - has been written, in colla- 
boration with G. Bricogne (to be published). It is 
designed to accommodate both MIR and MAD data 
or any mixture of the two. Analysis of the cutinase 
data will be a severe test, as this is a typical case of 
MAD analysis with systematic - albeit well identified 
- errors and low anomalous and dispersive ratios. 
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